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Abstract
Assuming energy states to be an independent and identically distributed positive
sequence, a randomized version of the conventional Bose occupancy problem
is investigated.

PACS numbers: 02.50.Ey, 02.50.−r, 05.30.Pr, 05.40.−a, 02.10.Yn

1. Introduction

The conventional Bose occupancy problem consists of assigning indistinguishable particles on
a prescribed deterministic energy states sequence. The purpose of this work is to initiate the
study of the following related problem: assuming energy states to constitute an independent
and identically distributed sequence of positive random variables, we wish to investigate the
corresponding randomized version of the conventional Bose occupancy problem. This simple
model does not seem to have received much attention in the past, to the best of the authors’
knowledge. Under such conditions, using a grand canonical approach, a Bose–Einstein-like
condensation phenomenon is shown to take place provided the probability mass at zero of
energies is small enough (else, probability mass of energies is not ‘too strongly concentrated’
at zero); we shall quantify these allegations. Next, we shall describe this phase transition
in some details and give some illustrative examples. The origin of this phenomenon seems
to result from the conjunction of two main effects: the randomness of the energy levels
with adequate distributional behavior near zero and the indistinguishability of particles to be
allocated.

When there is condensation, we shall discuss the problems of understanding the ground-
state occupancy at critical density, together with the number of distinct occupied states. Some
limit laws are obtained in some cases. Also, some aspects of ground-state occupancy in the
condensed phase will be investigated. The way the critical line separating condensed from
fluid phases depends on the full law of the energy levels sequence is elucidated.

Finally, using a description of occupancies of the ranked energy states (the sampling
formula), we shall derive the grand-canonical statistics of states with a prescribed amount
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of particles. This statistical aspect concerns the fluid phase only. We report on a Poisson
factorization of this distribution in a specific low temperature, low density limit.

The theory of Bose–Einstein condensation (BEC) in random systems is still quite far
from satisfactory rigorous description. Traditional BEC in an ideal quantum Bose gas occurs
in momentum space, when a macroscopically large number of bosons condenses onto the
ground state. The fact that the one-particle spectral gap is able to produce BEC even for
strongly interacting bosons has only been established quite recently (see [16]). The situation
still is unclear for a random one-particle spectrum. In Lenoble and Zagrebnov [17], rigorous
arguments are developed for the case when spectral randomness is due to some form of random
external potential. Here, in contrast to extreme case of the gap (zero density of states near the
bottom of the spectrum), (super-) exponential suppression of the density of states known as
the ‘Lifshitz tail’, can be observed.

It has also become increasingly clear over the last decade that condensation can also take
place in real space (even in one-dimensional systems) in the steady state of a broad class of
non-quantum physical systems. Examples include traffic jams on a highway, island formation
on growing crystals as well as many other systems (see [9]). The condensation problem has
also recently been addressed in a class of one-dimensional mass transport models [10].

In this paper, the combinatorial skeleton of a condensation phenomenon is exhibited for
a system which still is of a simpler nature: a random allocation problem of bosons onto
a purely random energy sequence. Perhaps is it the minimal problem setting under which
a condensation problem makes sense. For this peculiar abstract model, free of possible
physical nature of the system, we address and solve the condensation transition; due to its
intrinsic simplicity, many facets of the problem are amenable, to some extent, to analytic
calculations.

Incidentally, as a corollary of the present study giving condensation criterion, assuming
the energy sequence to be completely random (that is exponentially distributed with fixed
given mean), the Bose condensation phenomenon fails as a result of there being no sufficiently
large enough gap between the ground state and the first excited state. Similar interest and
conclusions for conditions under which Bose condensation does not take place can be found
in [9].

2. Randomized Bose samples

2.1. The model and some of its statistical features

Let En := (E1, . . . , En) be a system of independent and identically distributed (iid) positive
energies whose law will be specified later on (at this step, we shall however further assume that
E1 has a density f1 with support ⊆ R+ and that the largest value from En goes to ∞ almost
surely). Let β > 0 be the inverse of temperature. We shall presently study the randomized
energy version of the classical allocation model of statistical mechanics where energy levels
are originally chosen deterministically. For some related aspects of the randomized problem
(see [14]). The problem under study can now be formulated as follows.

Let there be k indistinguishable particles to place on the random energy levels (or states)
En. Conditionally on En (for quenched disorder), let Kn,k(m) denote the occupancy of energy
level m with Bose equilibrium collective law given by

PEn
(Kn,k(m) = km;m = 1, . . . , n) = 1

Zk,En
(β)

n∏
m=1

e−βEmkm . (2.1)

2
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With [zk]f (z) the coefficient of zk in the power-series expansion of f (z) the normalizing term
reads

Zk,En
(β) =

∑
k′

1+···+k′
n=k

k′
1,...,k

′
n�0

n∏
m=1

e−βEmk′
m = [zk]

n∏
m=1

(1 − z e−βEm)−1. (2.2)

The distribution defined by equations (2.1) and (2.2) favors configurations with minimal
(interaction free) energy Hn,k(En) := ∑n

m=1 Emkm. Given En, it is the one maximizing
entropy under the assumption that the average energy is fixed and β stands for the conjugate
parameter. Here and throughout, the subscript En in PEn

(or EEn
) will denote conditional

probability (or expectation) given En.

Remarks.

(i) In equation (2.1), km ∈ N0 := {0, 1, 2, . . .},m = 1, . . . , n with no restriction but
k1 + · · · + kn = k. Imposing the additional condition that km ∈ {0, 1},m = 1, . . . , n

(the Pauli exclusion principle), would lead to a Fermi–Dirac occupancy problem which
we shall not further develop specifically.

(ii) The conventional Bose occupancy problem [3] can be obtained by considering an ordered
deterministic energy sequence ε(n) := (ε(1), . . . , ε(n)) where ε(1) < · · · < ε(n), instead of
En used in (2.1) and (2.2). Typically, ε(m) = mα for some α > 1 (see [4], for example). We
therefore wish to investigate the role of randomization of the energy sequence, requiring
an additional averaging over disorder.

Indeed, given there are k particles, averaging equation (2.1) over disorder En, the searched
Bose unconditional canonical occupancy probability clearly is

P(Kn,k(m) = km;m = 1, . . . , n) = EPEn
(Kn,k(m) = km;m = 1, . . . , n). (2.3)

As a symmetric function of the km, this annealed distribution is exchangeable. In particular,
E(Kn,k(m)) = k/n,m = 1, . . . , n. Further, for instance, with k1 ∈ {0, . . . , k} and
En\1 := (E2, . . . , En)

PEn
(Kn,k(1) = k1) = e−βE1k1

Zk,En
(β)

∑
k2+···+kn=k−k1

n∏
m=2

e−βEmkm,

= e−βE1k1Zk−k1,En\1(β)

Zk,En
(β)

and

P(Kn,k(1) = k1) = E

[
e−βE1k1Zk−k1,En\1(β)

Zk,En
(β)

]
is the one-dimensional marginal of Kn,k(m) = km;m = 1, . . . , n. Except for very particular
cases as in the example which follows, a closed-form expression of equation (2.3) seems out
of reach.

Example. As a limiting example of Bose distribution, when β ↓ 0, the joint law of
Kn,k(m);m = 1, . . . , n tends to the uniform Bose–Einstein distribution (see [12, 13])

P(Kn,k(m) = km;m = 1, . . . , n) = 1(
n+k−1

k

)
3
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and the one-dimensional distribution at high temperature reads

P(Kn,k(1) = k1) =
(

n+k−k1−2
k−k1

)(
n+k−1

k

) , k1 = 0, . . . , k.

Before investigating some additional statistical properties of the Bose distribution
displayed in equation (2.3), let us first stress immediate consequences of the model.

Energy of a single particle. Assume first that k = 1. Then the sample is made of a single
particle. From Bose law, this particle will launch on energy level number m with conditional
probability e−βEm/ZEn

(β) where ZEn
(β) := Z1,En

(β) = ∑n
1 e−βEm . The corresponding

energy attached to this single particle, say En, has conditional law given by

PEn
(En = Em) = e−βEm/ZEn

(β) =: Vm,n(β), m = 1, . . . , n.

The random probabilities Vm,n(β) satisfy
∑n

1 Vm,n(β)
a.s.= 1 and so constitute a random partition

of unity. Let now EEn
(e−λEn ) be the conditional Laplace–Stieltjes transform (LST) of En. Then

EEn
(e−λEn ) = ZEn

(λ + β)/ZEn
(β). Averaging over En,

E(e−λEn ) := EEEn
(e−λEn ) = E

[
ZEn

(λ + β)/ZEn
(β)
]

characterizes the distribution of the single-particle energy. In particular,

E(En) = ∂βE
[−log ZEn

(β)
]
.

In this energy-biased picking procedure En → En , states with low energy levels are clearly
favored. One therefore expects En to be stochastically smaller than the typical energy level En

from the iid sequence En.

To study the Sherrington–Kirkpatrick model for spin glasses, similar questions were raised
for different purposes by Derrida in the early 1980s, under the (ruled out here) hypothesis that
energies were normally distributed (see [5–7]).

Total energy. Let now Hn,k := ∑n
m=1 EmKn,k(m) stand for total energy of the k particles

system where occupancies law is as in equation (2.1); its LST is clearly given by

E[e−λHn,k ] = E

[
Zk,En

(λ + β)

Zk,En
(β)

]
, λ � 0.

Let us now show that, when the number of energy levels is fixed, the proportions of
particles tend to concentrate on the ground state as the number of particles increases.

Proposition 1. For each m ∈ {1, . . . , n}, let En\m := {E1, . . . Em−1, Em+1, . . . En}. With n
fixed, as the number of particles grows, conditionally given En, we have(

Kn,k(m)

k
;m = 1, . . . , n

)
→
k↑∞

(Vm,n := I{Em<En\m};m = 1, . . . , n) (2.4)

in distribution.

Proof. Let us first consider the ordered version E(n) of the energy sequence En, namely
E(n) := (E(1),n, . . . , E(n),n) with E(1),n < · · · < E(n),n. Let also Ẽ(m),n := E(m),n − E(1),n >

0,m = 2, . . . , n. Developing the product partition function
n∏

m=1

(1 − z e−βEm)−1 =
n∏

m=1

(1 − z e−βE(m),n )−1

4
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appearing in equation (2.2) into a sum of rational fractions, extracting its zk-coefficient and
isolating the ground-state term, we get

Zk,En
(β)= Zk,E(n)

(β)= e−βE(1),nk

⎛⎝∏
m�=1

1

1− e−βẼ(m),n

+
n∑

m=2

e−βẼ(m),nk
∏
l �=m

1

1− e−β(E(l),n −E(m),n)

⎞⎠.

Inserting this expression into equation (2.1), with K(n),k(m);m = 2, . . . , n the
occupancies of energy levels E(2),n, . . . , E(n),n and km ∈ N0;m = 2, . . . , n , such that∑n

m=2 km � k, we get

PE(n)
(K(n),k(m) = km;m = 2, . . . , n) = (1 − ε(k))

n∏
m=2

{e−βẼ(m),nkm(1 − e−βẼ(m),n )} (2.5)

where ε(k) = e−βẼ(2),nk
∏

l �=1(1 − e−βẼ(l),n )/
∏

l �=2(1 − e−β(E(l),n−E(2),n)) is a negative corrective
term that goes to 0 exponentially fast with k becoming large. Suppose km = 	ksm

for some fixed sm ∈ (0, 1];m = 2, . . . , n. In this case, the probability displayed in
equation (2.5) goes to 0 when k goes to ∞: in other words, the probabilities of
K(n),k(m)/k;m = 2, . . . , n all concentrate on 0 and therefore all the probability mass goes
to ground state (m = 1). This is statement in equation (2.4) where I{A} stands for the set
indicator of the event A. Note that

(
Vm,n := I{Em<En\m};m = 1, . . . , n

)
is an exchangeable

partition of unity. In particular, for each m, E(Vm,n) = 1/n and σ 2(Vm,n) = (1 − 1/n)/n. �

Some remarks on Maxwell–Boltzmann version of the occupancy problem. This limiting
behavior of occupancies is in sharp contrast with the one arising in a Maxwell–Boltzmann
version of the randomized occupancy problem. Let us briefly address this point.

With
∑n

1 Vm,n(β)
a.s.= 1, the random numbers Vm,n(β) = e−βEm∑n

1 e−βEm
have been shown

to be the conditional Bose probabilities that a single particle hits state m with energy Em.
The partitioning system Vn(β) := (V1,n(β), . . . , Vn,n(β)) constitute an exchangeable random
partition of unity (in particular, for each m, E(Vm,n(β)) = 1/n). The random quantities
Vn(β) are essential in the derivation of the Maxwell–Boltzmann sampling distribution version
of the randomized occupancy problem. It proceeds as follows: let (U1, . . . , Uk) be k iid
uniform throws on [0, 1] partitioned by Vn(β). Let (Bn,k(1), . . . , Bn,k(n)) be an integral-
valued random vector which counts the number of visits to the different energy levels in a
k-sample in the following sense: if Ml is the random state label which the lth trial hits, then
Bn,k(m) := ∑k

l=1 I{Ml=m},m = 1, . . . , n. Clearly PVn(β)(Ml = m) = Vm,n(β) and, given
Vn(β), state m is chosen proportionally to its ‘size’ Vm,n(β).

With (b1, . . . , bn) ∈ N
n
0, satisfying

∑n
m=1 bm = k, (Bn,k(m) = bm;m = 1, . . . , n) now

follows the conditional multinomial distribution:

PVn(β)(Bn,k(m) = bm;m = 1, . . . , n) = k!∏n
m=1 bm!

n∏
m=1

V bm

m,n(β).

Averaging over Vn(β) gives the Maxwell–Boltzmann distribution

P(Bn,k(m) = bm;m = 1, . . . , n) = EPVn(β)(Bn,k(m) = bm;m = 1, . . . , n).

Clearly, proceeding in this way to fill up sequentially the energy levels, particles are assumed
distinguishable and, by strong law of large numbers, conditionally given En(

Bn,k(m)

k
;m = 1, . . . , n

)
→
k↑∞

(Vm,n(β);m = 1, . . . , n)

almost surely and in distribution (compare with equation (2.4)).

5
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Note that computational problems also arise in the canonical ensemble, since, averaging
over En, one needs to evaluate the awkward quantities

E

[
n∏

m=1

V bm

m,n(β)

]
= E

[
e−β

∑n
m=1 Embm(∑n

m=1 e−βEm

)k
]

.

Due to these computational difficulties, canonical randomized Maxwell Boltzmann statistics
turns out to be as intricate as Bose one. We shall not enter into more details on this question
and rather focus on the Bose occupancy problem as defined by equations (2.1) and (2.2).

Random allocation scheme representation of Bose distribution. From equations (2.1)–(2.2),
we observe immediately the distributional identity

(Kn,k(m) = km;m = 1, . . . , n)
d= (ξ1, . . . , ξn | ζn = k), (2.6)

where (ξ1, . . . , ξn) is iid on N
n
0 conditioned by its sum ζn :=∑n

1 ξm = k and

P(ξ1 = k1) = E
[
PEn

(ξ1 = k1)
] = E[e−βE1k1(1 − e−βE1)], k1 ∈ N0, (2.7)

a mixture of geometric distribution with success probability e−βE1 . Such a conditional
representation of the occupancies is called a random allocation scheme property in [15].

Let ρ > 0 be the density of particles per state and let κn := 	nρ
 .

Proposition 2. Assume E[(eα+βE1 − 1)−1] = ρ admits a solution for α := α(β, ρ) > 0. Then

Kn,κn
(1)

d→n↑∞ Kρ, (2.8)

where, with α := α(β, ρ),Kρ is a mean-ρ mixture of geometric distribution with probability
generating function

E[uKρ ] = E

[
1 − e−(α+βE1)

1 − u e−(α+βE1)

]
, u ∈ [0, 1]. (2.9)

Proof. This follows from the above allocation representation property and the Gibbs
conditioning principle. The random variable Kρ is the asymptotic typical cell occupation
at density ρ of particles per state. Its law can be obtained by exponential tilting those of
ξm,m = 1, . . . , n namely, with PEn

(ξm = km) = e−βEmkm(1 − e−βEm), by considering

P(̃ξm,α = k1) := E
(
PEn

(̃ξm,α = km)
) = E

[
e−αkmPEn

(ξm = km)∑
km�0 e−αkmPEn

(ξm = km)

]
.

Given En, ξ̃m,α,m = 1, . . . , n are therefore geometrically distributed with iid success random
probabilities e−(α+βEm) and expected values (eα+βEm − 1)−1. Applying Gibbs conditioning
principle to obtain equation (2.8), one needs to adjust α so as to meet the conditioning
requirement ζ̃n,α :=∑n

m=1 ξ̃m,α = 	nρ
. This will be possible at the only condition that there
exists an α > 0 such that

E[Kρ] = E[(eα+βE1 − 1)−1] = ρ. (2.10)

This condition will appear more clearly later to separate, in some cases, between a fluid and a
condensed phase. In case there is no α for a given ρ (see below for examples in the condensed
phase), there is no typical limiting cell occupation at density ρ. �

6
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Gibbs randomization of sample size (variable particle number). As it was stressed above,
the canonical conditional distributions given sample size is k are extremely difficult to evaluate
in general (even when k = 1). To circumvent this drawback, we shall now assume the number
of particles is variable and so randomize sample size. Let α > 0 (α = βµ where µ > 0 is
fugacity). Assume the number of particles Kn,α is now random with law given by the Gibbs
probability measure

PEn
(Kn,α = k) = e−αkZk,En

(β)

ZEn
(α, β)

, (2.11)

where the grand canonical partition now reads

ZEn
(α, β) =

∑
k�0

e−αkZk,En
(β) =

n∏
m=1

1

1 − e−(α+βEm)
. (2.12)

Alternatively, with λ � 0, we have

EEn
(e−λKn,α ) = ZEn

(α + λ, β)

ZEn
(α, β)

=
n∏

m=1

1 − e−(α+βEm)

1 − e−(λ+α+βEm)

E(e−λKn,α ) =
[
E

(
1 − e−(α+βE1)

1 − e−(λ+α+βE1)

)]n

.

Given En, the expected number of particles can be obtained through

EEn
(Kn,α) = −∂α log ZEn

(α, β).

Indexing now cell occupancies by α rather than k, with km ∈ N0;m = 1, . . . , n, the joint
occupancies probability reads

PEn

(
Kn,α(m) = km;m = 1, . . . , n

) = 1

ZEn
(α, β)

n∏
m=1

e−(α+βEm)km,

and Kn,α :=∑n
m=1 Kn,α(m).

Let φ1(β) := E e−βE1 be the Laplace–Stieltjes transform of E1. Averaging over En, the
unconditional occupancy probability is

P(Kn,α(m) = km;m = 1, . . . , n) := EPEn
(Kn,α(m) = km;m = 1, . . . , n)

= E

[
n∏

m=1

e−(α+βEm)km(1 − e−(α+βEm))

]

=
n∏

m=1

E[e−(α+βE1)km(1 − e−(α+βE1))]

=
n∏

m=1

(e−αkm [φ1(βkm) − e−αφ1(β(km + 1))]). (2.13)

It is exchangeable and under the form of a mere product measure. In particular, with k1 ∈ N0

P(Kn,α(1) = k1) = e−αk1 [φ1(βk1) − e−αφ1(β(k1 + 1))].

Stated differently, with ξ1,α the N0-valued random variable with distribution P(ξ1,α � k1) =
e−αk1φ1(βk1), we have

P(Kn,α(m) = km;m = 1, . . . , n) =
n∏

m=1

P(ξm,α = km),

where (ξ1,α, . . . , ξn,α) is an iid sequence. This factorized representation turns out to be useful.

7
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(1) For example, let K+
n,α be the grand-canonical occupancy of state with the largest amount

of particles. Then

P
(
K+

n,α � k
) = (1 − e−αkφ1(βk))n

and one expects some Poisson approximation. However, following Embrechts et al
[8, theorem 3.1.3, p 117], observing that

P(ξ1,α � k1)

P(ξ1,α � k1 − 1)
� e−α ∈ (0, 1) and lim

k1↑∞
P(ξ1,α � k1)

P(ξ1,α � k1 − 1)
< 1,

there is no sequence kn such that n e−αknφ1(βkn) → γ ∈ (0,∞). Therefore, whatever the
sequence kn is, there is no non-degenerate limit of the form P

(
K+

n,α � kn

) → x where
x ∈ [0, 1]\{0, 1}; in other words, for every sequence kn such that P

(
K+

n,α � kn

) → x,
either x = 0 or 1 and there is no way to normalize K+

n,α so as to obtain a non-degenerate
limit distribution. The discreteness of the distributions involved prevents the maximum
from converging properly to some extreme value distribution and instead forces this
oscillatory behavior.

(2) The grand canonical distribution of total energy: let us consider the LST of the random
variable Hn,α . With λ � 0 and km ∈ N0, it is

E(e−λHn,α ) = E

⎛⎝ ∑
km;m=1,...,n

e−λ
∑n

m=1 kmEmPEn
(Kn,α(m) = km;m = 1, . . . , n)

⎞⎠
= E

⎛⎝ n∏
m=1

∑
km

e−(α+(λ+β)Em)km(1 − e−(α+βEm))

⎞⎠
= E

(
n∏

m=1

1 − e−(α+βEm)

1 − e−(α+(λ+β)Em)

)
=
{

E

(
1 − e−(α+βE1)

1 − e−(α+(λ+β)E1)

)}n

.

This shows that Hn,α is the sum of n iid random variables whose increment has LST given
by E

(
1−e−(α+βE1)

1−e−(α+(λ+β)E1)

)
. In particular, by strong law of large numbers, Hn,α/n converges a.s.

to the mean energy per state, namely

Hn,α

n
→n↑∞ E

(
E1

eα+βE1 − 1

)
.

2.2. A condensation phenomenon

The origin of the condensation phenomenon to be described now results from the conjunction
of two main effects of the model under study: the randomness of the energy levels (the system
is disordered) and the indistinguishability of particles to be allocated. Phase transitions induced
by disorder is well known in related contexts (see [17]).

A Bose–Einstein-like condensation phenomenon. It remains to interpret α in more details.
Observing that

EEn
(Kn,α(m)) = − 1

β
∂Em

log ZEn
(α, β) = 1

eα+βEm − 1
,

we have

EEn
(Kn,α) =

n∑
m=1

1

eα+βEm − 1
ν := EEEn

(Kn,α) = nE((eα+βE1 − 1)−1).

8
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Assuming the number of levels n to be the extensive variable of such a mean-field model, we
thus get the particle density per state

ρ := ν

n
= E((eα+βE1 − 1)−1). (2.14)

Usually, it is therefore of interest to try to deduce α from (ρ, β) which are the physical
quantities which are known in practice. Letting z := e−α to denote fugacity, developing the
argument of the expectation, this is also the implicit state equation

ρ = zhβ(z), (2.15)

where hβ(z) has the power series representation

hβ(z) =
∑
i�0

zihi(β) with hi(β) = φ1 (β (i + 1)) . (2.16)

Let zc > 0 be the convergence radius of the series

Hβ(z) := zhβ(z) =
∑
i�1

ziφ1(βi).

Two cases arise: zc = 1 or zc > 1. If zc > 1, hβ(1) exists, is monotone decreasing and maps
β ∈ (0,∞) onto (∞, 0); let therefore βc be defined by ρ = hβc

(1). If zc = 1, let βc be
defined as before if Hβ(zc) < ∞ and βc := ∞ if Hβ(zc) = ∞. In any case, for β < βc, by
B ′′urmann–Lagrange inversion formula, α = − log z where z ∈ (0, 1 ∧ zc) and

z = 1 +
∑
l�1

ρl

l
hl(β) with hl(β) := [zl−1]hβ(z)−l . (2.17)

A Bose–Einstein condensation-like phenomenon therefore pops in when the probability that
energies take values close to 0 are small enough. We shall now supply three examples.

Examples. In example (i), the probability mass in 0 of energy is chosen log-algebraically
large. In the subsequent example (ii), the probability mass of energy in 0 is exponentially
small. These two examples show that a condensation-like phenomenon occurs if the probability
distribution of energy in a neighborhood of 0 is small enough (with growth at least linear). In
a last extreme example (iii), the support of the law of E1 is (ε0,∞), ε0 > 0; ground state ε0 is
away from 0 with probability 1.

(i) Assume the distribution of energy E1, say F1(ε) := ∫ ε
f1(ε

′) dε′, satisfies

F1(ε) ∼ε↓0 C · εθ/L(1/ε),

where C > 0, θ � 0 and L(x) a slowly varying at ∞ function (such as log x). The
smaller θ is, the more energy is concentrated at 0. Then by Karamata–Tauberian theorem
(see [2])

φ1(β) ∼β↑∞ C · �(1 + θ) · β−θ /L(β)

and φ1(β) is regularly varying at ∞. For all θ � 0, β > 0, the convergence radius of
Hβ(z) is zc = 1. If θ � 1,Hβ(zc) = ∞ whereas for θ > 1,Hβ(zc) < ∞. If θ � 1, there
is no condensation whereas when θ > 1, a critical value βc of β can be defined. When
θ > 1, the order of differentiability of z → Hβ(z) at zc = 1 is 	θ
 − 1.

In all such cases, φ1(2β)/φ1(β) ∼β↑∞ 2−θ does not tend to 0 when β ↑ ∞.

9
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(ii) Assume density of E1 satisfies f1(ε) ∼ε↓0 C · ε−3/2e−1/ε : a small value of E1 is
rather unlikely (exponentially small). Then, φ1(β) ∼β↑∞ C · e−√

β so that zc = 1
with Hβ(zc) < ∞. In this case, φ1(2β)/φ1(β) does tend to 0 when β ↑ ∞.

This example is a particular case of the related one for which f1(ε) ∼ε↓0 C · e−1/εc

for some c > 0. In this case, a small value of E1 is exponentially–algebraically small
and, by applying the saddle point method: φ1(β) ∼β↑∞ C · β

− c+2
2(c+1) e−B·βc/(c+1)

for some
constant B > 0. Here again, φ1(2β)/φ1(β) → 0 when β ↑ ∞.

(iii) Let ε0 > 0 denote spectral gap and a > 0. Assume f1(ε) = a e−a(ε−ε0), ε > ε0 (a
truncated exponential model). Then φ1(β) = e−βε0

1+β/a
. Here zc = eβε0 > 1 and Hβ(zc) = ∞.

Note that Hβ(z) is infinitely differentiable (smooth) at z = 1 < zc. In this case, βc is
uniquely determined by

∑
i�1

e−βcε0 i

1+(βci)/a
= ρ.

Remark. In this approach, the free parameter is density ρ and the Lagrange inversion formula
only holds for β < βc (temperature is high enough). If β is the free parameter, Lagrange
inversion formula only is valid for ρ < ρc := hβ(1) (the free Bose gas has small enough
density). In the (β, ρ) plane, the critical line ρc =: ρc(β) separates a diluted fluid phase
ρ < ρc from a condensed phase ρ > ρc. Note that ρc(β) = E((eβE1 − 1)−1).

One can summarize shortly the results as follows:

Proposition 3. We have

(i) If E(1/E1) = ∞, there is no condensation and the only available phase is fluid.
(ii) If E(1/E1) < ∞, there is condensation: the critical line separating the condensed

(ρ > ρc) from fluid (ρ < ρc) phases has equation ρ = ρc(β) = E((eβE1 − 1)−1) which
is also the convergent series

ρ = ρc(β) =
∑
i�1

φ1(βi)

involving the LST of energies.

Thermodynamics of the diluted fluid phase. Internal energy reads Un(α, β) = E(UEn
(α, β))

where

UEn
(α, β) = −∂β log ZEn

(α, β) =
n∑

m=1

Em

eα+βEm − 1
.

Observing that E
(

E1

eα+βE1 −1

)
< ∞ we get

UEn
(α, β)

n

a.s.→
n↑∞

E

(
E1

eα+βE1 − 1

)
=: u(α, β).

Further, Un(α, β) = n · u(α, β). The quantity u(α, β) is internal energy per state.
Assume E log(1 − e−(α+βE1)) < ∞ for each (α, β) ∈ R

2
+. With Nn(ε) := ∑n

m=1 I{Em�ε},
let the empirical distribution function (or density of states) of En be Dn(ε) := n−1Nn(ε). Let
FEn

(α, β) := − 1
β

log ZEn
(α, β) be the conditional free energy. Then, by the strong law of

large numbers

−1

n
FEn

(α, β) = 1

nβ

n∑
m=1

log(1 − e−(α+βEm))

= 1

β

∫
R+

log(1 − e−(α+βε))Dn(dε)
a.s.→

n↑∞
1

β
E log(1 − e−(α+βE1)) =: f (α, β)

10
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and

Fn(α, β) := E
(
FEn

(α, β)
) = n

β
E log(1 − e−(α+βE1)) = n · f (α, β).

The quantity f (α, β) is free energy per state. We have f (α, β) > 1
β

log(1 − e−α).

As usual, we can define entropy Sn(α, β) as

Sn(α, β) = β (Un (α, β) − Fn(α, β)) .

Clearly, Sn(α, β) = n · s(α, β) where s(α, β) = β (u (α, β) − f (α, β)) is entropy per state.
We have

s(α, β) = E

(
βE1

eα+βE1 − 1

)
− E log

(
1 − e−(α+βE1)

)
.

Remark. Assume n ↑ ∞, ν ↑ ∞ in such a way that particle density ρ = ν/n exists. Then,
using the equation of state as defined by equations (2.15) and (2.16), there is an expression
of α in terms of ρ and β, provided the system is in the diluted phase. The thermodynamical
quantities per state u(α, β), f (α, β) and s(α, β) can better be expressed in terms of ρ and β.
The functions s(α, β) and βf (α, β) are β-Legendre conjugates.

The existence of a limit for the thermodynamical quantities per state when the system
becomes infinite is clear (see [1] for similar considerations).

3. Bose randomized occupancy and order statistics

In practice, it is convenient to order the energy levels; by doing so, dependence is naturally
introduced. Let then E(n) := (E(1),n, . . . , E(n),n) be the order statistics of En, with
E(1),n < · · · < E(n),n. As is well known that the joint probability density of this vector
is

fE(1),n,...,E(n),n
(ε1, . . . , εn) = n!

n∏
m=1

f1(εm) · I{ε1<···<εn}. (3.1)

Thermodynamics under ranked energy levels is the same as the one under unranked ones.
This is basically because for symmetric in the arguments functionals ϕ(En)

a.s.= ϕ(E(n));
conditionally on En, thermodynamic functions involved separable and additive functionals of

the form ϕ(En) = ∑n
1 g(Em) for different g. However,

∑
kmEm

a.s.
�= ∑

kmE(m),n and this is
why sampling under En does not reduce to sampling under E(n).

For instance, given E(n), the joint probability of occupancies K(n),α(m) of E(m),n;m =
1, . . . , n now reads

PE(n)

(
K(n),α(m) = km;m = 1, . . . , n

) = 1

ZE(n)
(α, β)

n∏
m=1

e−(α+βE(m),n)km

ZE(n)
(α, β) =

n∏
m=1

1

1 − e−(α+βE(m),n)
.

Exchangeability is lost; averaging over E(n), the unconditional occupancy probability is

P(K(n),α(m) = km;m = 1, . . . , n) := EPE(n)
(K(n),α(m) = km;m = 1, . . . , n)

= E

[
n∏

m=1

e−(α+βE(m),n)km(1 − e−(α+βE(m),n))

]

= n!
∫

ε1<···<εn

n∏
m=1

e−(α+βεm)km(1 − e−(α+βεm))f1(εm) dεm.

11
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The occupation numbers of state m with energy E(m),n, namely E
(
K(n),α(m)

)
, present some

interest in practice. Here for instance, we get a randomized version of Planck statistics

E(K(n),α(m)) =
∑
km�1

P(K(n),α(m) � km) = E

(
1

eα+βE(m),n − 1

)
,

where, with F1 the distribution function of E1 (F 1 := 1 − F1), E(m),n > 0 has density
n!

(m − 1)!(n − m)!
f1(ε)F1(ε)

m−1F 1(ε)
n−m.

Let us investigate the full ground-state occupancy distribution in more details.

Lemma 1. The grand canonical distribution of ground-state occupancy is

P(K(n),α(1) � k1) = e−αk1

(
1 − β

∫ ∞

0

(
1 − F1

(
x

k1

))n

e−βx dx

)
. (3.2)

Proof. With E(n)\1 := (E(2),n, . . . , E(n),n), φ(1)(β) := E e−βE(1),n and k1 ∈ N0, the ground
state E(1),n occupancy is

P(K(n),α(1) = k1) = E

[
e−(α+βE(1),n)k1ZE(n)\1(α, β)

ZE(n)
(α, β)

]
= E[e−(α+βE(1),n)k1(1 − e−(α+βE(1),n))]

= e−αk1 [φ(1)(βk1) − e−αφ(1)(β(k1 + 1))].

With F 1(ε1) := P(E1 > ε1), F (1)(ε1) := P(E(1),n > ε1), recalling F (1)(ε1) = F 1(ε1)
n, we

get

φ(1)(β) := E[e−βE(1),n ] = 1 − β

∫ ∞

0
F 1(ε1)

n e−βε1 dε1.

Therefore equation (3.2) holds. �

The last formula allows to extract some limiting information on the ground-state
occupancy at critical point.

A limit law at criticality from example (i). Assume F1(ε) ∼ε↓0 C ·εθ with θ > 1, as in example
(i). Approaching critical point, α ↓ 0, ρ ↑ ρc(β) = Hβ(1) and so, with kn,c := nρc(β) the
critical number of particles in the system

P
(
K(n),0(1) � k1/θ

n,c z
) = 1 − β

∫ ∞

0

(
1 − F1

(
x

k
1/θ
n,c z

))n

e−βx dx

∼n↑∞ 1 − β

∫ ∞

0
e
−nF1

(
x

k
1/θ
n,c z

)
e−βxdx

∼n↑∞ 1 − β

∫ ∞

0
e− C

ρc
( z

x )
−θ

e−βxdx =: G(z),

where it can be checked that G(z), z > 0, as a scale exponential mixture of the Fréchet
distribution e− C

ρc
z−θ

, is a complementary distribution function of some random variable Z > 0.
Thus, we obtain

Corollary 1. Fix β > 0 and assume F1(ε) ∼ε↓0 C · εθ . Then, with kn,c := nρc(β) the critical
number of particles in the system at temperature β−1, at critical point

K(n),0(1)

k
1/θ
n,c

d→n↑∞ Z. (3.3)

12
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Ground-state occupancy grows like k
1/θ
n,c which is close to nρc only as θ approaches 1 from

above.

Some remarks on the condensed phase. Fix β > 0 and assume condensation takes place. In
the super-critical condensed phase ρ > ρc(β), there is no α such that Bose condition holds.
Therefore, the grand canonical approach is useless to describe the condensed phase and, with
κn = 	nρ
, one needs to use back the canonical ensemble description Kn,κn

(m),m = 1, . . . , n

of the occupancy problem. We have the following result:

Proposition 4. Assume E
(
1
/
E2

1

)
< ∞, so that E(1/E1) < ∞ and condensation takes place.

Let ρ > ρc be the density of particles in the condensed phase. Under this assumption, almost
surely

1

n

n∑
m=2

e−βẼ(m),n

1 − e−βẼ(m),n

→
n↑∞

ρc = ρc(β) = E

[
e−βE1

1 − e−βE1

]
< ∞,

so that a proportion n(ρ − ρc) of particles goes to ground state, while the residual nρc is
scattered on all remaining energy levels.

Sketch of proof. First, the minimal value E(1),n from En goes to 0 almost surely. Under fairly
general assumptions indeed (see [8]), the almost sure behavior of partial minima reads

lim inf
n↑∞

E(1),n

εn

= 1 a.s.,

where εn ↓ 0 is defined by F1(εn) = n−1. We shall say E(1),n ∼ εn .
Let now g(x) := (eβx − 1)−1. If there is condensation (or if E(1/E1) < ∞), then as

n ↑ ∞
1

n
g(E(1),n) → 0

because, in the worst case E(1),n ∼ n−1/θ , θ > 1 and then 1
n
g(E(1),n) ∼ n1/θ−1 → 0.

Recall now from equation (2.5) that when k = κn is large, the joint law of
occupancy numbers K(n),κn

(m);m = 2, . . . , n for all states but ground state is (up to a
constant going exponentially fast to 0 with κn ↑ ∞) close to the one of a sequence of
independent geometrically distributed random variables with success probabilities e−βẼ(m),n ,
where Ẽ(m),n := E(m),n − E(1),n (see the proof of proposition 1). Let us therefore investigate
the large n behavior of the sample mean number of particles

1

n

n∑
m=2

e−βẼ(m),n

1 − e−βẼ(m),n

=:
1

n

n∑
m=2

g(Ẽ(m),n)

on all states but ground state. Recalling E(1),n goes to 0 almost surely, we have

g(Ẽ(m),n) ∼ 1

eβE(m),n (1 − βE(1),n) − 1

∼ 1

eβE(m),n − 1

(
1 +

βE(1),n

1 − e−βE(m),n

)
.

Therefore,

1

n

n∑
m=2

g(Ẽ(m),n) ∼ 1

n

n∑
m=2

g(E(m),n) +
βE(1),n

n

n∑
m=2

e−βE(m),n

(1 − e−βE(m),n )2
.

13
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Under the additional assumption E
(
1
/
E2

1

)
< ∞, the corrective term goes to 0 when n ↑ ∞

(with E(1),n ↓ 0). Indeed,

βE(1),n

n

n∑
m=2

e−βE(m),n

(1 − e−βE(m),n )2
= βE(1),n

(
1

n

n∑
m=1

e−βE(m),n

(1 − e−βE(m),n )2
− 1

n

e−βE(1),n

(1 − e−βE(1),n )2

)
and, by strong law of large numbers,

1

n

n∑
m=1

e−βE(m),n

(1 − e−βE(m),n )2
→ σ 2 = E

(
e−βE1

(1 − e−βE1)2

)
,

which is a finite variance if E
(
1/E2

1

)
< ∞. Next,

βE(1),n

n

e−βE(1),n

(1 − e−βE(1),n )2
∼ 1

nβE(1),n

→ 0.

Therefore, 1
n

∑n
m=2 g(Ẽ(m),n) ∼ 1

n

∑n
m=1 g(E(m),n) = 1

n

∑n
m=1 g(Em) and by strong law of

large numbers

1

n

n∑
m=2

g(Ẽ(m),n) →
n↑∞

ρc = ρc(β) = E[g(E1)]. �
In a random scheme of allocating particles, it is said that a giant component appears if,

as k, n → ∞ while the ratio ρ = k/n is fixed to ρ > ρc, the maximum K(n),k(1) of the
random variables Kn,k(m),m = 1, . . . , n, with probability tending to 1 is of order n and the
second-order statistic has a limit distribution with normalizing constant of order less than n.
In the condensed phase, K(n),k(1) (the number of particles attached to ground state) is of order
of magnitude n(ρ − ρc). Let us investigate K(n),k(2) (the number of particles on state just
above ground state) and check this from an example.

First, P(E(1),n > ε1) = F(ε1)
n and, for m = 1, . . . , n − 1 we have the Markov property

P(E(m+1),n > εm+1 | E(m),n = εm, . . . , E(1),n = ε1)

= P(E(m+1),n > εm+1 | E(m),n = εm) =
(

F 1(εm+1)

F 1(εm)

)n−m

; εm+1 > εm

involving the cumulative probability distribution function of the minimum of n − m iid
observations drawn from F 1 truncated at εm. If m = 1, with ε2 > ε1

P(E(2),n > ε2 | E(1),n = ε1) =
(

F 1 (ε2)

F 1(ε1)

)n−1

and so with ε > 0

P(Ẽ(2),n > ε | E(1),n = ε1) =
(

F 1 (ε1 + ε)

F 1(ε1)

)n−1

=
(

1 − F 1 (ε1) − F 1(ε1 + ε)

F 1(ε1)

)n−1

.

From this latter expression, assuming n is large and F1(ε) ∼ε↓0 C · εθ , θ > 1 , one can indeed
estimate E(1),n and Ẽ(2),n to be both of order of magnitude n−1/θ . Therefore, the average
occupancy of state E(2),n is g(Ẽ(2),n) ∼ n1/θ which is of order less than n.

4. Sampling formulae

Sampling formula. Let p ∈ {1, . . . , n} and 1 � m1 < · · · < mp � n be an increasing
subsequence of {1, . . . , n}. Let M1, . . . ,Mp be the labels of occupied energy levels and Pn,α

14
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denote the number of such occupied states. With kq ∈ N := {1, 2, . . .}, a realization of
occupancies K(n),α(mq), we clearly have

Proposition 5 (sampling formula).

PE(n)
(Mq = mq,K(n),α(mq) = kq; q = 1, . . . , p;Pn,α = p)

=
p∏

q=1

[e−(α+βE(mq ),n)kq (1 − e−(α+βE(mq ),n))]
∏

q �=1,...,p

[1 − e−(α+βE(mq ),n)].

Averaging over E(n) with joint law given by equation (3.1), gives the unconditional probability
of the event Mq = mq,K(n),α(mq) = kq; q = 1, . . . , p;Pn,α = p.

Summing next the above conditional probability over kq; q = 1, . . . , p, we get

PE(n)
(Mq = mq; q = 1, . . . , p;Pn,α = p) =

∏
q �={1,...,p}

[1 − e−(α+βE(mq ),n)]

×
∑

k1,...,kp�1

p∏
q=1

[e−(α+βE(mq ),n)kq (1 − e−(α+βE(mq ),n))]

=
∏

q �={1,...,p}
[1 − e−(α+βE(mq ),n)]

p∏
q=1

e−(α+βE(mq ),n). (4.1)

Averaging over E(n), using the joint law of E(n), we get the unconditional probability
P(Mq = mq; q = 1, . . . , p;Pn,α = p) that only p � n of the ordered energy levels with
labels mq are occupied. In particular,

E

⎧⎨⎩
n∏

q=2

[1 − e−(α+βE(q),n)]e−(α+βE(1),n)

⎫⎬⎭ (4.2)

is the unconditional probability that only ground state E(1),n is occupied.
Summing over the

(
n

p

)
sequences m1 < · · · < mp, with p ∈ {0, . . . , n}, we obtain a

binomial distribution for the number of occupied energy states

P(Pn,α = p) =
(

n

p

)
[e−αφ1(β)]p(1 − e−αφ1(β))n−p.

Note that P(Pn,α = 0) = (1 − e−αφ1(β))n which is the Gibbs probability that there is no
particle in the system: Kn,α = 0.

Corollary 2. Fix β > 0 and let kn,c := nρc(β) be the critical number of particles in the
system. Then, as n ↑ ∞, α ↓ 0, approaching critical point from the fluid phase

Pn,α

nρ
∼ Pn,0

kn,c

d→ φ1(β)

ρc(β)
< 1. (4.3)

Proof. With λ � 0, the LST of Pn,0

kn,c
reads

E
(
e−λ

Pn,0
kn,c

) = (1 − (1 − e− λ
kn,c

)
φ1(β)

)n ∼ e− λφ1(β)

ρc(β) .

From the state equation, ρc(β) = Hβ(1) = ∑
i�1 φ1(βi) > φ1(β). At critical point, the

degenerate (non-random) fraction φ1(β)

ρc(β)
of states is occupied. �
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Remark (a non-degenerate low temperature ∗-limit at ν < ∞). The above results suggest
that the following ‘star’ limit should also be worth considered: assume n ↑ ∞, β ↑ ∞ (so
that φ1(β) ↓ 0) in such a way that nφ1(β) = γ > 0.

Then

Pn,α →∗ Pα

d∼ Poisson(γ e−α).

Recalling

ν = nzhβ(z) where zhβ(z) =
∑
i�1

ziφ1(βi),

in case r2(β) := φ1(2β)/φ1(β) →β↑∞ 0, to the dominant term in β, zhβ(z) ∼∗ zφ1(β). Thus,

ν ∼∗ nzφ1(β) ∼∗ γ z = γ e−α . Thus, in this asymptotic, Pα

d∼ Poisson(ν) where ν is the
finite expected number of particles in the system. Note that in such limiting situations, density
ρ = ν/n →∗ 0 : in the *-limit, both temperature and density vanish simultaneously.

Asymptotics of the statistics of the number of energy states with prescribed amount of particles.
The understanding of the number of occupied (and therefore also of unoccupied) states is part
of the broader problem of the number of states with prescribed amount of particles. Let
therefore

An,α(i) :=
n∑

m=1

I{Kn,α(m)=i}; i � 0 (4.4)

be the number of energy states with exactly i particles. Clearly, An,α(0) = n − Pn,α is the
number of free states and

∑
i�0 An,α(i) = n. The case i = 1 (i = 2) corresponds to singleton

(doubleton) states. Recall first

P(Kn,α(m) = km;m = 1, . . . , n) =
n∏

m=1

P(ξm,α = km),

where (ξ1,α, . . . , ξn,α) is an iid sequence with P(ξ1,α � k1) = e−αk1φ1(βk1). From this, for all
sequences (ai; i � 0) satisfying the constraint

∑
i�0 ai = n, we easily get

P(An,α(1) = a1, . . . , An,α(i) = ai, . . .) = n! ·
∑

l�1 lal∏
i=0

{
P(ξ1,α = i)ai

ai!

}
.

When i � 1, we have An,α(i) =∑n
m=1 I{Kn,α(m)=i}, so that

E(An,α(i)) =
n∑

m=1

P(Kn,α(m) = i) =
n∑

m=1

P(ξm,α = i)

= nP(ξ1,α = i) = n e−αi[φ1(βi) − e−αφ1(β(i + 1))].

Thus, consistently,

E(Kn,α) =
∑
i�1

iE(An,α(i)) = n
∑
i�1

i e−αi[φ1(βi) − e−αφ1(β(i + 1))]

= n
∑
i�1

e−αiφ1(βi) = nE((eα+βE1 − 1)−1).

Therefore, we obtain
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Proposition 6.

(i) For all sequences (ai; i � 0) satisfying
∑

i�0 ai = n :

P(An,α(1) = a1, . . . , An,α(i) = ai, . . .) = n! ·
∑

l�1 lal∏
i=0

{
P(ξ1,α = i)ai

ai!

}
. (4.5)

(ii) Assume n ↑ ∞, β ↑ ∞ in such a way that nφ1(β) := γ > 0. In this weak *-limit,
(An,α(i); i � 1) converges to a sequence of independent random elements with law given

by Aα(i)
d∼ Poisson(λi) , i � 1, where

λi := γ e−αi[ri − e−αri+1] (4.6)

and

ri := lim
β↑∞

ri(β) with ri(β) := φ1(βi)/φ1(β). (4.7)

(iii) In the weak *-limit, the number of visited states Pn,α converges to Pα

d∼ Poisson(γ e−α).

Proof. It remains to prove (ii) and (iii).
Observing P(ξ1,α = 0) = 1 − e−αφ1(β) and a0 = n −∑i�1 ai , we have

P(An,α(1) = a1, . . . , An,α(i) = ai, . . .) = n!(
n −∑i�1 ai

)
!
(1 − e−αφ1(β))n

×
∑

l�1 lal∏
i=1

{
(P(ξ1,α = i)/(1 − e−αφ1(β)))ai

ai!

}

∼ ∗n
∑

i�1 ai e−γ e−α
∏
i�1

{
φ1(β)ai (e−αiri(β) − e−α(i+1)ri+1(β))ai

ai!

}

∼ ∗
∏
i�1

λ
ai

i e−λi

ai!
.

In the last equivalence, we used γ e−α = ∑
i�1 λi . The law of (An,α(i); i � 1) therefore

converges to the infinite product of Poisson factors

P
∗(Aα(1) = a1, . . . , Aα(i) = ai, . . .) =

∏
i�1

λ
ai

i e−λi

ai!

with the announced finite-dimensional distributions in (ii). The constants ν := E
∗(Kα), α > 0

and γ > 0 are now related by

ν =
∑
i�1

iλi = γ
∑
i�1

e−αiri .

To prove (iii) again, observe Pα =∑i�1 Aα(i) and use the Poisson decomposition. �

Example.

(i) Assume r2(β) := φ1(2β)/φ1(β) →β↑∞ r2 = 0 as in examples (ii) and (iii). Then for
all i � 2, ri(β) → ri = 0 and so λi → 0 (β ↑ ∞). Thus, An,α(i) �= 0 with some

positive probability only when i = 1 (singletons) and P
∗ (Aα (1) = a1) = λ

a1
1 e−λ1

a1! where
λ1 = γ e−α = ν. This asymptotic regime is the one of uniques. States whose occupancies
cannot exceed 1 are currently obtained in a Fermi–Dirac context. We have no physical
interpretation of this statement.
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(ii) Assume r2(β) := φ1(2β)/φ1(β) →β↑∞ r2 = 2−θ as in the regularly varying example (i).
Then, ri(β) ∼β↑∞ i−θ and λi ∼β↑∞ γ (1−e−α) e−αi i−θ ; configurations with An,α(i) > 0
exist for all i � 1.
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